3.5.92 \(\int \frac {1}{(a+b \tan (c+d x))^4} \, dx\) [492]

3.5.92.1 Optimal result
3.5.92.2 Mathematica [C] (verified)
3.5.92.3 Rubi [A] (verified)
3.5.92.4 Maple [A] (verified)
3.5.92.5 Fricas [B] (verification not implemented)
3.5.92.6 Sympy [F(-2)]
3.5.92.7 Maxima [B] (verification not implemented)
3.5.92.8 Giac [B] (verification not implemented)
3.5.92.9 Mupad [B] (verification not implemented)

3.5.92.1 Optimal result

Integrand size = 12, antiderivative size = 165 \[ \int \frac {1}{(a+b \tan (c+d x))^4} \, dx=\frac {\left (a^4-6 a^2 b^2+b^4\right ) x}{\left (a^2+b^2\right )^4}+\frac {4 a b \left (a^2-b^2\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right )^4 d}-\frac {b}{3 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^3}-\frac {a b}{\left (a^2+b^2\right )^2 d (a+b \tan (c+d x))^2}-\frac {b \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^3 d (a+b \tan (c+d x))} \]

output
(a^4-6*a^2*b^2+b^4)*x/(a^2+b^2)^4+4*a*b*(a^2-b^2)*ln(a*cos(d*x+c)+b*sin(d* 
x+c))/(a^2+b^2)^4/d-1/3*b/(a^2+b^2)/d/(a+b*tan(d*x+c))^3-a*b/(a^2+b^2)^2/d 
/(a+b*tan(d*x+c))^2-b*(3*a^2-b^2)/(a^2+b^2)^3/d/(a+b*tan(d*x+c))
 
3.5.92.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.27 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.07 \[ \int \frac {1}{(a+b \tan (c+d x))^4} \, dx=\frac {-\frac {3 i \log (i-\tan (c+d x))}{(a+i b)^4}+\frac {3 i \log (i+\tan (c+d x))}{(a-i b)^4}+\frac {2 b \left (12 a \left (a^2-b^2\right ) \log (a+b \tan (c+d x))-\frac {\left (a^2+b^2\right ) \left (13 a^4+2 a^2 b^2+b^4+3 a b \left (7 a^2-b^2\right ) \tan (c+d x)+\left (9 a^2 b^2-3 b^4\right ) \tan ^2(c+d x)\right )}{(a+b \tan (c+d x))^3}\right )}{\left (a^2+b^2\right )^4}}{6 d} \]

input
Integrate[(a + b*Tan[c + d*x])^(-4),x]
 
output
(((-3*I)*Log[I - Tan[c + d*x]])/(a + I*b)^4 + ((3*I)*Log[I + Tan[c + d*x]] 
)/(a - I*b)^4 + (2*b*(12*a*(a^2 - b^2)*Log[a + b*Tan[c + d*x]] - ((a^2 + b 
^2)*(13*a^4 + 2*a^2*b^2 + b^4 + 3*a*b*(7*a^2 - b^2)*Tan[c + d*x] + (9*a^2* 
b^2 - 3*b^4)*Tan[c + d*x]^2))/(a + b*Tan[c + d*x])^3))/(a^2 + b^2)^4)/(6*d 
)
 
3.5.92.3 Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.20, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.833, Rules used = {3042, 3964, 3042, 4012, 3042, 4012, 3042, 4014, 3042, 4013}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+b \tan (c+d x))^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a+b \tan (c+d x))^4}dx\)

\(\Big \downarrow \) 3964

\(\displaystyle \frac {\int \frac {a-b \tan (c+d x)}{(a+b \tan (c+d x))^3}dx}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a-b \tan (c+d x)}{(a+b \tan (c+d x))^3}dx}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\frac {\int \frac {a^2-2 b \tan (c+d x) a-b^2}{(a+b \tan (c+d x))^2}dx}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a^2-2 b \tan (c+d x) a-b^2}{(a+b \tan (c+d x))^2}dx}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\frac {\frac {\int \frac {a \left (a^2-3 b^2\right )-b \left (3 a^2-b^2\right ) \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {a \left (a^2-3 b^2\right )-b \left (3 a^2-b^2\right ) \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4014

\(\displaystyle \frac {\frac {\frac {\frac {4 a b \left (a^2-b^2\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}+\frac {x \left (a^4-6 a^2 b^2+b^4\right )}{a^2+b^2}}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\frac {4 a b \left (a^2-b^2\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)}dx}{a^2+b^2}+\frac {x \left (a^4-6 a^2 b^2+b^4\right )}{a^2+b^2}}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

\(\Big \downarrow \) 4013

\(\displaystyle \frac {\frac {\frac {\frac {4 a b \left (a^2-b^2\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )}+\frac {x \left (a^4-6 a^2 b^2+b^4\right )}{a^2+b^2}}{a^2+b^2}-\frac {b \left (3 a^2-b^2\right )}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))}}{a^2+b^2}-\frac {a b}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}}{a^2+b^2}-\frac {b}{3 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^3}\)

input
Int[(a + b*Tan[c + d*x])^(-4),x]
 
output
-1/3*b/((a^2 + b^2)*d*(a + b*Tan[c + d*x])^3) + (-((a*b)/((a^2 + b^2)*d*(a 
 + b*Tan[c + d*x])^2)) + ((((a^4 - 6*a^2*b^2 + b^4)*x)/(a^2 + b^2) + (4*a* 
b*(a^2 - b^2)*Log[a*Cos[c + d*x] + b*Sin[c + d*x]])/((a^2 + b^2)*d))/(a^2 
+ b^2) - (b*(3*a^2 - b^2))/((a^2 + b^2)*d*(a + b*Tan[c + d*x])))/(a^2 + b^ 
2))/(a^2 + b^2)
 

3.5.92.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3964
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + 
b*Tan[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2) 
 Int[(a - b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, 
 b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4013
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)* 
(x_)]), x_Symbol] :> Simp[(c/(b*f))*Log[RemoveContent[a*Cos[e + f*x] + b*Si 
n[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]
 

rule 4014
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[(a*c + b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a 
*d)/(a^2 + b^2)   Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && N 
eQ[a*c + b*d, 0]
 
3.5.92.4 Maple [A] (verified)

Time = 0.46 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.11

method result size
derivativedivides \(\frac {\frac {\frac {\left (-4 a^{3} b +4 a \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (a^{4}-6 a^{2} b^{2}+b^{4}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}-\frac {b}{3 \left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )^{3}}-\frac {b \left (3 a^{2}-b^{2}\right )}{\left (a^{2}+b^{2}\right )^{3} \left (a +b \tan \left (d x +c \right )\right )}-\frac {a b}{\left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )^{2}}+\frac {4 a b \left (a^{2}-b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}}{d}\) \(183\)
default \(\frac {\frac {\frac {\left (-4 a^{3} b +4 a \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (a^{4}-6 a^{2} b^{2}+b^{4}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}-\frac {b}{3 \left (a^{2}+b^{2}\right ) \left (a +b \tan \left (d x +c \right )\right )^{3}}-\frac {b \left (3 a^{2}-b^{2}\right )}{\left (a^{2}+b^{2}\right )^{3} \left (a +b \tan \left (d x +c \right )\right )}-\frac {a b}{\left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )^{2}}+\frac {4 a b \left (a^{2}-b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}}{d}\) \(183\)
norman \(\frac {\frac {\left (a^{4}-6 a^{2} b^{2}+b^{4}\right ) a^{3} x}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}-\frac {4 b^{2} a^{3} \tan \left (d x +c \right )}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}+\frac {b^{3} \left (a^{4}-6 a^{2} b^{2}+b^{4}\right ) x \left (\tan ^{3}\left (d x +c \right )\right )}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}+\frac {-10 a^{4} b^{3}-3 b^{5} a^{2}-b^{7}}{3 b^{2} \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}+\frac {b \left (3 a^{2} b^{3}-b^{5}\right ) \left (\tan ^{3}\left (d x +c \right )\right )}{3 a \left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) d}+\frac {3 b \left (a^{4}-6 a^{2} b^{2}+b^{4}\right ) a^{2} x \tan \left (d x +c \right )}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}+\frac {3 b^{2} \left (a^{4}-6 a^{2} b^{2}+b^{4}\right ) a x \left (\tan ^{2}\left (d x +c \right )\right )}{\left (a^{6}+3 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \left (a^{2}+b^{2}\right )}}{\left (a +b \tan \left (d x +c \right )\right )^{3}}-\frac {2 a b \left (a^{2}-b^{2}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right )}+\frac {4 a b \left (a^{2}-b^{2}\right ) \ln \left (a +b \tan \left (d x +c \right )\right )}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right )}\) \(531\)
risch \(-\frac {x}{4 i a^{3} b -4 i a \,b^{3}-a^{4}+6 a^{2} b^{2}-b^{4}}-\frac {8 i a^{3} b x}{a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}}+\frac {8 i a \,b^{3} x}{a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}}-\frac {8 i a^{3} b c}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right )}+\frac {8 i a \,b^{3} c}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right )}+\frac {4 i b^{2} \left (-12 i a^{3} b \,{\mathrm e}^{4 i \left (d x +c \right )}+9 a^{4} {\mathrm e}^{4 i \left (d x +c \right )}+3 b^{4} {\mathrm e}^{4 i \left (d x +c \right )}+6 i a^{3} b \,{\mathrm e}^{2 i \left (d x +c \right )}+6 i a \,b^{3} {\mathrm e}^{2 i \left (d x +c \right )}+18 a^{4} {\mathrm e}^{2 i \left (d x +c \right )}+15 a^{2} b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-3 b^{4} {\mathrm e}^{2 i \left (d x +c \right )}+18 i a^{3} b -4 i a \,b^{3}+9 a^{4}-11 a^{2} b^{2}+2 b^{4}\right )}{3 \left (-i a +b \right )^{3} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+i a \,{\mathrm e}^{2 i \left (d x +c \right )}-b +i a \right )^{3} d \left (i a +b \right )^{4}}+\frac {4 a^{3} b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right )}{\left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right ) d}-\frac {4 a \,b^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right )}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right )}\) \(565\)
parallelrisch \(-\frac {54 x \tan \left (d x +c \right ) a^{4} b^{6} d -9 x \tan \left (d x +c \right ) a^{2} b^{8} d +b^{10}+21 \tan \left (d x +c \right ) a^{5} b^{5}+18 \tan \left (d x +c \right ) a^{3} b^{7}-12 \ln \left (a +b \tan \left (d x +c \right )\right ) a^{6} b^{4}+18 x \,a^{5} b^{5} d -3 x \,a^{3} b^{7} d -18 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a^{2} b^{8}-36 \ln \left (a +b \tan \left (d x +c \right )\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a^{4} b^{6}+36 \ln \left (a +b \tan \left (d x +c \right )\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a^{2} b^{8}+18 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) \tan \left (d x +c \right ) a^{5} b^{5}-18 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) \tan \left (d x +c \right ) a^{3} b^{7}-3 x \left (\tan ^{3}\left (d x +c \right )\right ) b^{10} d -12 \ln \left (a +b \tan \left (d x +c \right )\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a^{3} b^{7}+12 \ln \left (a +b \tan \left (d x +c \right )\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a \,b^{9}+12 \ln \left (a +b \tan \left (d x +c \right )\right ) a^{4} b^{6}+36 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) a^{3} b^{7}-3 \tan \left (d x +c \right ) a \,b^{9}+3 a^{2} b^{8}+6 \left (\tan ^{2}\left (d x +c \right )\right ) a^{2} b^{8}-3 x \left (\tan ^{3}\left (d x +c \right )\right ) a^{4} b^{6} d +54 x \left (\tan ^{2}\left (d x +c \right )\right ) a^{3} b^{7} d -9 x \left (\tan ^{2}\left (d x +c \right )\right ) a \,b^{9} d +18 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) \left (\tan ^{2}\left (d x +c \right )\right ) a^{4} b^{6}-6 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) a^{4} b^{6}+9 \left (\tan ^{2}\left (d x +c \right )\right ) a^{4} b^{6}+6 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) a^{6} b^{4}+13 a^{6} b^{4}+15 a^{4} b^{6}-36 \ln \left (a +b \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) a^{5} b^{5}-3 x \,a^{7} b^{3} d +6 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a^{3} b^{7}-6 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) \left (\tan ^{3}\left (d x +c \right )\right ) a \,b^{9}-3 \left (\tan ^{2}\left (d x +c \right )\right ) b^{10}-9 x \tan \left (d x +c \right ) a^{6} b^{4} d +18 x \left (\tan ^{3}\left (d x +c \right )\right ) a^{2} b^{8} d -9 x \left (\tan ^{2}\left (d x +c \right )\right ) a^{5} b^{5} d}{3 \left (a +b \tan \left (d x +c \right )\right )^{3} d \,b^{3} \left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (a^{2}+b^{2}\right )^{2}}\) \(729\)

input
int(1/(a+b*tan(d*x+c))^4,x,method=_RETURNVERBOSE)
 
output
1/d*(1/(a^2+b^2)^4*(1/2*(-4*a^3*b+4*a*b^3)*ln(1+tan(d*x+c)^2)+(a^4-6*a^2*b 
^2+b^4)*arctan(tan(d*x+c)))-1/3*b/(a^2+b^2)/(a+b*tan(d*x+c))^3-b*(3*a^2-b^ 
2)/(a^2+b^2)^3/(a+b*tan(d*x+c))-a*b/(a^2+b^2)^2/(a+b*tan(d*x+c))^2+4*a*b*( 
a^2-b^2)/(a^2+b^2)^4*ln(a+b*tan(d*x+c)))
 
3.5.92.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 511 vs. \(2 (163) = 326\).

Time = 0.27 (sec) , antiderivative size = 511, normalized size of antiderivative = 3.10 \[ \int \frac {1}{(a+b \tan (c+d x))^4} \, dx=-\frac {24 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7} - {\left (13 \, a^{3} b^{4} - 9 \, a b^{6} + 3 \, {\left (a^{4} b^{3} - 6 \, a^{2} b^{5} + b^{7}\right )} d x\right )} \tan \left (d x + c\right )^{3} - 3 \, {\left (a^{7} - 6 \, a^{5} b^{2} + a^{3} b^{4}\right )} d x - 3 \, {\left (10 \, a^{4} b^{3} - 11 \, a^{2} b^{5} + b^{7} + 3 \, {\left (a^{5} b^{2} - 6 \, a^{3} b^{4} + a b^{6}\right )} d x\right )} \tan \left (d x + c\right )^{2} - 6 \, {\left (a^{6} b - a^{4} b^{3} + {\left (a^{3} b^{4} - a b^{6}\right )} \tan \left (d x + c\right )^{3} + 3 \, {\left (a^{4} b^{3} - a^{2} b^{5}\right )} \tan \left (d x + c\right )^{2} + 3 \, {\left (a^{5} b^{2} - a^{3} b^{4}\right )} \tan \left (d x + c\right )\right )} \log \left (\frac {b^{2} \tan \left (d x + c\right )^{2} + 2 \, a b \tan \left (d x + c\right ) + a^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) - 3 \, {\left (6 \, a^{5} b^{2} - 15 \, a^{3} b^{4} + a b^{6} + 3 \, {\left (a^{6} b - 6 \, a^{4} b^{3} + a^{2} b^{5}\right )} d x\right )} \tan \left (d x + c\right )}{3 \, {\left ({\left (a^{8} b^{3} + 4 \, a^{6} b^{5} + 6 \, a^{4} b^{7} + 4 \, a^{2} b^{9} + b^{11}\right )} d \tan \left (d x + c\right )^{3} + 3 \, {\left (a^{9} b^{2} + 4 \, a^{7} b^{4} + 6 \, a^{5} b^{6} + 4 \, a^{3} b^{8} + a b^{10}\right )} d \tan \left (d x + c\right )^{2} + 3 \, {\left (a^{10} b + 4 \, a^{8} b^{3} + 6 \, a^{6} b^{5} + 4 \, a^{4} b^{7} + a^{2} b^{9}\right )} d \tan \left (d x + c\right ) + {\left (a^{11} + 4 \, a^{9} b^{2} + 6 \, a^{7} b^{4} + 4 \, a^{5} b^{6} + a^{3} b^{8}\right )} d\right )}} \]

input
integrate(1/(a+b*tan(d*x+c))^4,x, algorithm="fricas")
 
output
-1/3*(24*a^4*b^3 + 3*a^2*b^5 + b^7 - (13*a^3*b^4 - 9*a*b^6 + 3*(a^4*b^3 - 
6*a^2*b^5 + b^7)*d*x)*tan(d*x + c)^3 - 3*(a^7 - 6*a^5*b^2 + a^3*b^4)*d*x - 
 3*(10*a^4*b^3 - 11*a^2*b^5 + b^7 + 3*(a^5*b^2 - 6*a^3*b^4 + a*b^6)*d*x)*t 
an(d*x + c)^2 - 6*(a^6*b - a^4*b^3 + (a^3*b^4 - a*b^6)*tan(d*x + c)^3 + 3* 
(a^4*b^3 - a^2*b^5)*tan(d*x + c)^2 + 3*(a^5*b^2 - a^3*b^4)*tan(d*x + c))*l 
og((b^2*tan(d*x + c)^2 + 2*a*b*tan(d*x + c) + a^2)/(tan(d*x + c)^2 + 1)) - 
 3*(6*a^5*b^2 - 15*a^3*b^4 + a*b^6 + 3*(a^6*b - 6*a^4*b^3 + a^2*b^5)*d*x)* 
tan(d*x + c))/((a^8*b^3 + 4*a^6*b^5 + 6*a^4*b^7 + 4*a^2*b^9 + b^11)*d*tan( 
d*x + c)^3 + 3*(a^9*b^2 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*d*ta 
n(d*x + c)^2 + 3*(a^10*b + 4*a^8*b^3 + 6*a^6*b^5 + 4*a^4*b^7 + a^2*b^9)*d* 
tan(d*x + c) + (a^11 + 4*a^9*b^2 + 6*a^7*b^4 + 4*a^5*b^6 + a^3*b^8)*d)
 
3.5.92.6 Sympy [F(-2)]

Exception generated. \[ \int \frac {1}{(a+b \tan (c+d x))^4} \, dx=\text {Exception raised: AttributeError} \]

input
integrate(1/(a+b*tan(d*x+c))**4,x)
 
output
Exception raised: AttributeError >> 'NoneType' object has no attribute 'pr 
imitive'
 
3.5.92.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 385 vs. \(2 (163) = 326\).

Time = 0.43 (sec) , antiderivative size = 385, normalized size of antiderivative = 2.33 \[ \int \frac {1}{(a+b \tan (c+d x))^4} \, dx=\frac {\frac {3 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} {\left (d x + c\right )}}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {12 \, {\left (a^{3} b - a b^{3}\right )} \log \left (b \tan \left (d x + c\right ) + a\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} - \frac {6 \, {\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} - \frac {13 \, a^{4} b + 2 \, a^{2} b^{3} + b^{5} + 3 \, {\left (3 \, a^{2} b^{3} - b^{5}\right )} \tan \left (d x + c\right )^{2} + 3 \, {\left (7 \, a^{3} b^{2} - a b^{4}\right )} \tan \left (d x + c\right )}{a^{9} + 3 \, a^{7} b^{2} + 3 \, a^{5} b^{4} + a^{3} b^{6} + {\left (a^{6} b^{3} + 3 \, a^{4} b^{5} + 3 \, a^{2} b^{7} + b^{9}\right )} \tan \left (d x + c\right )^{3} + 3 \, {\left (a^{7} b^{2} + 3 \, a^{5} b^{4} + 3 \, a^{3} b^{6} + a b^{8}\right )} \tan \left (d x + c\right )^{2} + 3 \, {\left (a^{8} b + 3 \, a^{6} b^{3} + 3 \, a^{4} b^{5} + a^{2} b^{7}\right )} \tan \left (d x + c\right )}}{3 \, d} \]

input
integrate(1/(a+b*tan(d*x+c))^4,x, algorithm="maxima")
 
output
1/3*(3*(a^4 - 6*a^2*b^2 + b^4)*(d*x + c)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4* 
a^2*b^6 + b^8) + 12*(a^3*b - a*b^3)*log(b*tan(d*x + c) + a)/(a^8 + 4*a^6*b 
^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) - 6*(a^3*b - a*b^3)*log(tan(d*x + c)^2 + 
 1)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) - (13*a^4*b + 2*a^2*b^ 
3 + b^5 + 3*(3*a^2*b^3 - b^5)*tan(d*x + c)^2 + 3*(7*a^3*b^2 - a*b^4)*tan(d 
*x + c))/(a^9 + 3*a^7*b^2 + 3*a^5*b^4 + a^3*b^6 + (a^6*b^3 + 3*a^4*b^5 + 3 
*a^2*b^7 + b^9)*tan(d*x + c)^3 + 3*(a^7*b^2 + 3*a^5*b^4 + 3*a^3*b^6 + a*b^ 
8)*tan(d*x + c)^2 + 3*(a^8*b + 3*a^6*b^3 + 3*a^4*b^5 + a^2*b^7)*tan(d*x + 
c)))/d
 
3.5.92.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 370 vs. \(2 (163) = 326\).

Time = 0.40 (sec) , antiderivative size = 370, normalized size of antiderivative = 2.24 \[ \int \frac {1}{(a+b \tan (c+d x))^4} \, dx=\frac {\frac {3 \, {\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} {\left (d x + c\right )}}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} - \frac {6 \, {\left (a^{3} b - a b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {12 \, {\left (a^{3} b^{2} - a b^{4}\right )} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{a^{8} b + 4 \, a^{6} b^{3} + 6 \, a^{4} b^{5} + 4 \, a^{2} b^{7} + b^{9}} - \frac {22 \, a^{3} b^{4} \tan \left (d x + c\right )^{3} - 22 \, a b^{6} \tan \left (d x + c\right )^{3} + 75 \, a^{4} b^{3} \tan \left (d x + c\right )^{2} - 60 \, a^{2} b^{5} \tan \left (d x + c\right )^{2} - 3 \, b^{7} \tan \left (d x + c\right )^{2} + 87 \, a^{5} b^{2} \tan \left (d x + c\right ) - 48 \, a^{3} b^{4} \tan \left (d x + c\right ) - 3 \, a b^{6} \tan \left (d x + c\right ) + 35 \, a^{6} b - 7 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}}{{\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{3}}}{3 \, d} \]

input
integrate(1/(a+b*tan(d*x+c))^4,x, algorithm="giac")
 
output
1/3*(3*(a^4 - 6*a^2*b^2 + b^4)*(d*x + c)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4* 
a^2*b^6 + b^8) - 6*(a^3*b - a*b^3)*log(tan(d*x + c)^2 + 1)/(a^8 + 4*a^6*b^ 
2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) + 12*(a^3*b^2 - a*b^4)*log(abs(b*tan(d*x 
+ c) + a))/(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4*a^2*b^7 + b^9) - (22*a^3*b^4 
*tan(d*x + c)^3 - 22*a*b^6*tan(d*x + c)^3 + 75*a^4*b^3*tan(d*x + c)^2 - 60 
*a^2*b^5*tan(d*x + c)^2 - 3*b^7*tan(d*x + c)^2 + 87*a^5*b^2*tan(d*x + c) - 
 48*a^3*b^4*tan(d*x + c) - 3*a*b^6*tan(d*x + c) + 35*a^6*b - 7*a^4*b^3 + 3 
*a^2*b^5 + b^7)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*(b*tan(d* 
x + c) + a)^3))/d
 
3.5.92.9 Mupad [B] (verification not implemented)

Time = 5.23 (sec) , antiderivative size = 333, normalized size of antiderivative = 2.02 \[ \int \frac {1}{(a+b \tan (c+d x))^4} \, dx=\frac {\ln \left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (\frac {4\,a\,b}{{\left (a^2+b^2\right )}^3}-\frac {8\,a\,b^3}{{\left (a^2+b^2\right )}^4}\right )}{d}+\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )}{2\,d\,\left (a^4\,1{}\mathrm {i}-4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}+4\,a\,b^3+b^4\,1{}\mathrm {i}\right )}+\frac {\frac {{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (b^5-3\,a^2\,b^3\right )}{a^6+3\,a^4\,b^2+3\,a^2\,b^4+b^6}-\frac {13\,a^4\,b+2\,a^2\,b^3+b^5}{3\,\left (a^6+3\,a^4\,b^2+3\,a^2\,b^4+b^6\right )}+\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (a\,b^4-7\,a^3\,b^2\right )}{a^6+3\,a^4\,b^2+3\,a^2\,b^4+b^6}}{d\,\left (a^3+3\,a^2\,b\,\mathrm {tan}\left (c+d\,x\right )+3\,a\,b^2\,{\mathrm {tan}\left (c+d\,x\right )}^2+b^3\,{\mathrm {tan}\left (c+d\,x\right )}^3\right )}+\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,d\,\left (a^4-a^3\,b\,4{}\mathrm {i}-6\,a^2\,b^2+a\,b^3\,4{}\mathrm {i}+b^4\right )} \]

input
int(1/(a + b*tan(c + d*x))^4,x)
 
output
(log(a + b*tan(c + d*x))*((4*a*b)/(a^2 + b^2)^3 - (8*a*b^3)/(a^2 + b^2)^4) 
)/d + log(tan(c + d*x) - 1i)/(2*d*(4*a*b^3 - 4*a^3*b + a^4*1i + b^4*1i - a 
^2*b^2*6i)) + (log(tan(c + d*x) + 1i)*1i)/(2*d*(a*b^3*4i - a^3*b*4i + a^4 
+ b^4 - 6*a^2*b^2)) + ((tan(c + d*x)^2*(b^5 - 3*a^2*b^3))/(a^6 + b^6 + 3*a 
^2*b^4 + 3*a^4*b^2) - (13*a^4*b + b^5 + 2*a^2*b^3)/(3*(a^6 + b^6 + 3*a^2*b 
^4 + 3*a^4*b^2)) + (tan(c + d*x)*(a*b^4 - 7*a^3*b^2))/(a^6 + b^6 + 3*a^2*b 
^4 + 3*a^4*b^2))/(d*(a^3 + b^3*tan(c + d*x)^3 + 3*a*b^2*tan(c + d*x)^2 + 3 
*a^2*b*tan(c + d*x)))